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Key Massages/ Questions

Key Massages

Models assumptions is critical in data analysis

Quality research are not straightforward, they require extra effort

Simulation studies setting: Important issues to deal with

Questions

What to do when your model cannot be implement in available
software

Computational difficulties !, when model is not convergence or
unnecessarily slow.

What your simulation results ’contradict’ real life data analysis.
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Key Massages/ Questions

Background

B.Sc Mathematics

M.Sc Statistic (Mathematics)

PhD Projects

Longitudinal Data Analysis, Model selection in Bayesian Paradigm

examine and develop statistical tools in a Bayesian context the
appropriateness of diagnostic tools for overall predictive performance of
an assumed mixed model

to find the reason for specific model deviations such as the presence of
outliers and influential observations
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Linear mixed model (LMM)


Yi = Xiβ + Zibi + εi

bi ∼ Nq(0, G)

εi ∼ Nni(0,Σi)

b1, . . . , bn, ε1, . . . , εn independent,

(1)

where

G is a (q × q) covariance matrix.

Σi is a (ni × ni) depends on i only

Assumes normality for the random error and random effects

Assumptions? (Verbeke and Lesaffre, 1997; Lachos et al., 2010) when the
data present skewness

. . . We consider some extensions in Bayesian paradigm
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Bayesian model selection . . .

. . . (extensions of LMM) models,

DIC (Spiegelhalter et al., 2002) measure the predictive ability of the fitted
model to future data. Theoretical Justification?

Celeux et al. (2006) discussed different definitions for DIC, including

conditional DIC (cDIC) �calculated based on the conditional likelihood
p(y|φ, µ)

marginal DIC (mDIC) �p(y|φ) =
∫
µ
p(y|φ, µ)p(µ|φ)dµ

φ �vector of parameters

µ �latent variables (random effect)
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Bayesian model selection . . .

. . . (extensions of LMM) models,

It has been shown via simulation that mDIC outperforms cDIC since the latter
tends to select the over-fitted model (Chan and Grant, 2016).

Computational difficulties are the major drawback for mDIC

mDIC computation via importance sampling.

We extend the importance sampling algorithms for computation of mDIC to
the model with skew-normal latent variables
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Simulation studies

yij = β0 + β1tij + β2gi + bi + εij , (2)

n = 184 with gi=0 if i ≤ 92 and gi=1 if i > 92,

β0 = 4, β1 = 1 and β2 = 2.

generate 100 Monte Carlo data from equation (2) using the R software
jointly with rjags with the following specifications

β0, β1, β2 ∼ N1

(
0, 102

)
,

σ2
ε , σ

2
e ∼ IG (0.01, 0.01) ,

δb ∼ N1

(
0, 102

)
I {δb > 0} .
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Simulation results

Table: The results of Mento carlo based on 100 generated data sets, N1(0, 4) distribution
for the random effects

Parameter Real MC Mean MC SD MC Median 5% th.q 95% th.q
(a) Normal Scenario

β0 4 4.0597 0.0031 4.0599 4.0536 4.0669
β1 2 1.7586 0.0104 1.7582 1.7403 1.7836
β2 1 1.0520 0.0146 1.0505 1.0109 1.0849

σ2
ε 0.25 0.2477 0.0014 0.2476 0.2450 0.2507

σ2
b 4.0278 0.0011 4.0278 4.0260 4.0303

(b) Skew-Normal Scenario
β0 4 5.6095 0.2892 5.6230 5.1030 6.1008
β1 2 2.1318 0.0111 2.1324 2.4895 2.1707
β2 1 0.9014 0.0166 0.9063 0.5765 1.1862

σ2
ε 0.25 0.2453 0.0174 0.2436 0.2275 0.2579

σ2
b - 3.8217 0.1521 3.8270 3.5362 4.0762
δb - 1.0491 0.6013 1.0491 1.0464 1.0516

For most part, parameter estimates are unbiased

posterior distributions are fairly symmetric

penalty for estimating the random effects density when the normal assumption holds
is minimal

The mDIC and cDIC criteria correctly selected the normal distribution 98% and 96%
respectively
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Simulation results

Table: The results of Mento Carlo based on 100 generated data sets, Gamma(4, 1)
distribution for the random effects

Parameter Real MC Mean MC SD MC Median 5% th.q 95% th.q
(a) Normal Scenario

β0 4 3.8432 0.3012 3.8431 3.5237 4.0124
β1 2 2.0516 0.0122 2.0517 2.0469 2.0558
β2 1 1.0931 0.6114 1.0915 1.0731 1.1132

σ2
ε 0.25 0.2516 0.0011 0.2515 0.2498 0.2538

σ2
b 4.3972 1.1997 4.3841 4.1901 4.6641

(b) Skew-Normal Scenario
β0 4 1.5755 0.0016 1.5776 1.5425 1.6011
β1 2 2.0879 0.0002 2.0879 2.0833 2.0922
β2 1 0.8964 0.0071 0.8962 0.8849 0.8105

σ2
ε 0.25 0.2482 0.0072 0.2479 0.2448 0.2811

σ2
b 1.0664 0.0014 1.0665 1.0641 1.0692
δb 3.0132 0.0140 3.0132 0.0132 3.0132

parameter estimates for most part are unbiased

loss of efficiency of estimate (higher MC SD) on β1, β2

failure to take appropriate account of the true feature of the random effects leads to
less precise inference on what are usually quantiles of interest

results are similar to those reported in Hu and Davidian (1998) and Zhang and
Davidian (2001) using classical approach and Arellano-Valle et al. (2007) using
Bayesian approach.
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Comparing considered models

Table: Comparing competing models using conditional and marginal DIC

Method Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

conditional D(θ) 317.56 317.93 319.34 319.91 319.31 321.41
pD -569.31 -576.14 -513.21 -582.21 -572.41 -514.71

cDIC -182.71 -181.91 -184.16 -180.98 -181.31 -188.83

marginal D(θ̄) 390.40 393.03 393.08 398.3 386.40 384.21
pD 7.48 7.88 10.22 7.47 13.42 12.32

mDIC 415.00 418.90 409.72 416.10 412.10 413.56

Chan and Grant (2016) showed that cDIC tends to choose over-fitted models while
mDIC work better in general

Model 3 appropriate!
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